RECENT HARDWARE AND SOFTWARE DEVELOPMENTS FOR PDP-8

I.K.0. Bol *)
Institute for Nuclear Physics Research (IKO)
Amsterdam, Holland

ABSTRACT

Aspects and applications of:

PDP-8 binary program relocation, scatter-read magnetic
tape, dynamic storage allocation, multi-job processing
(time/memory sharing), asynchronous file handling, program
tracing, autonomous display and a computer-computer con-
versational scheme as in use at IKO are indicated.

General Introduction.

At I.X.0. four PDP-8 computers have been installed for
different tasks. The first of these, now in use for several
years, has become part of the complex nuclear detection
system "Bol", especially designed for coincidence experiments.

In this paper we will concentrate on work around this par-
ticular PDP-8 only as far as it has led to generally applice-
ble results. In addition to being interfaced to the experi-
mental set up, the PDP-8 has been coupled to:

- 2 Datamec 2020, 17 kc tape units

- an extended Nuclear Data M-unit for autonomous display

with lightpen

- a medium size computer EL-X8

Although this PDP-8 has only 4 k memory it is able to con-
trol all its peripherals in a macroscopically simultaneous
manner, This was achieved by developing a multi job super-
visory system MONIKOR, and by reducing software processing-
time as well as -space.

%) Identifies a group of people participating in the BOL-project

(construction of a 64-fold nuclear detection system);

R. van Dantzig, J.E.J. Oberski, K. Mulder, L.A.Ch. Koerts
M.A.A., Sonnemans, J.L. Visschers, A.D., Ypenberg
W.C.M. Biekmann, P.G. van Engen, J.C.A. van Gessel, A. Mars

R.P. Meesters, F.A, van Hall, P.U. ten Kete, J. Kraus,
I, Kwakkel

f’r:‘n ((',;-’? ad avtfcr Kv’ D

= B

This system allows independent and semi-independent job pro-
grams to be run on a2 time- and memory sharing basis. The job-
programs are task-oriented modular-programs protected and
synchronized, using queuing-techniques. They cen be written
in PAL III by applying some additional rules. Job-programs
are kept under supervision as far as dynamic storage alloca-
tion, activation and synchronozation are concerned. They are
read into core during run time of other job-programs from
either magnetic tape or paper tape. Job-programs are rejected
whenever inactive and not protected, if the process runs
short of space. Job-programs may occupy non-contiguous memory
pages. A suitable pagewise allocation technique allows this.
Section 1 of this paper gives a brief discussion of the
simple program relocation method we use.
Section 2 reviews some applications of useful hardware
features of our magnetic tape system. Section 3 indicates how
dynamic storage allocation is implemented into the PDP-8
system. The supervisory system MONIKOR is briefly discussed
in Section 4. Section 5 contains a macroscopic description
of an asynchronous file handling system while a helpful hard-
ware circuit, enabling powerful program tracing is mentioned
in Section 6. In Section 7 some aspects of the philosophy
of our computer-computer interfacing are mentioned. Section 8,
finally, contains some remarks on an autonomous display
unit (with lightpen) coupled to the PDP-8.
The appendices contain some additional details.

1, Program Relocation.

The possibility for reading in a binary program in an ad hoc
specified memory region is of importance for an efficient
use of core memory.

Once such relocation possibilities are created, a Dynamic
Storage Allocation technique (viz. 3) as e.g. required for our
multi-job processing system MONIKOR (viz. 4) can be developed.

The relocation technique we have chosen allows for shifts
of programs or program parts over in integral number of memory
pages (200(8) addresses). "Keys® are used to link independently
relocated programs, "relocators"™ to provide the additional
information for relocation (viz. I). The technique is simple
and has proved to be quite useful, The binary paper tape format
we use (viz. I) is compatible with fixed and with relocatable

loading.
This compatibility implies: ,

- all programs relocatable or fixed are punched in paper
tape in a common format called SHRIMP-format.

- all SHRIMP formatted papertapes can be loaded with a
gsimpler loader, the SHRIMP loader (viz. II), which can
store programs at a'"fixed" predetermihed memory region.
The loader provides for sum checking and optional "load
and go". Relocatable programs are loaded at their "nomi-
nal" location. The SHRIMP-loader occupies 25 (10) memory
locations and in our system replaces both the RIM and BIN
loader from DEC,

- for relocation of "normal' relocatable programs two loaders
are present, the SHARKY-loader and the SHARK-loader.

The SHARKY (viz. II.2) loader is the simpler one. It
occupies 103 (10) locations and can be located at the last
memory page together with the SHRIMP loader.

The SHARK (viz. II.3) loader has additional facilities such

as self-protection, printed documentation of occupied memory
regions, and read-compare mode.

For "JOB"-programs suitable for parallel processing (viz. 4)

a special loader (job) has been created, which allows programs
with a lengih of several memory pages to be loaded in multi
job processing environment, and to be scattered over the memo-
ry (viz. 3).

All loaders are relocatable themselves., Relocatable pro-
grams in SHRIMP format can be obtained using either a modified
PAL III assembler or a special punch program (length: 103(10)
locations).

The ideas of the SHRIMP-relocation technique have been used
in a completely analogous fashion for loading programs from
magnetic tape. A feature facilitating the application of this
technique is the scatter-read facility for magnetic tapes as
incorporated in our tape interfaces (viz. 2).

2, Scatter-read magnetic tape.

A magnetic tape control unit providing interrupted reading
facilities has been designed. The facilities are useful for
(relocatable) loading of binary programs in both single- and
multi-job processing cnvironment. ‘

-4 -

They amount to the possibility of reading in, tape records
at non contiguous memory regions (viz. III).

This has proven to lead to short and relatively simple pro-
grams allowing for fast program monitoring and library pro-
cessing.

This may be clear from the following:

—-any program may be contained in one tape record. Programs
occupying several disconnected contiguous memory regions
of arbitrary length may be packed in a single tape record.
Thus unnecessary interrecord gaps and associated waiting
times are avoided.

When the program is relocatable, eventual key blocks as
well as relocators (viz. 1) are all contained in a single
(program) record.

the length of a (program) record to be loaded from tape is
in general unknown at the beginning of a search. Our tape
format allows the tape programs to search for and to load

a desired program in a single pass of the record containing
that program. There is no need to stop, backspace and re-
read, nor is it necessary that a library description be
stored at the beginning of the tape.

The automatic boot-strapping mechanism for magnetic tape may
illustrate the foregoing:
Using the SHRIMP loader a short tape loader is read into core
via the teletype. With the auto-start facility of the SHRIMP
loader it is automatically started.
The tapeloader reads in from magnetic tape the library loader
which again is automatically started. A package of programs,
relocatable and fixed, may thereafter be loaded on either key-~
board or papertape commands.

3, Dynamic storage allocation.

Memory sharing of asynchronous programs (viz. 4) requires
a well-adapted dynamic storage allocation technique. In the
technique we applied, the memory is divided into two regions:
the free region and the occupied region. The regions are sub-
divided into pages of 200(8) memory locations. The boundary
between the free- and the occupied region is dynamic and in
fact the regions may pagewise penetrate each other. The ad-
ministration consists mainly of a list of 32 page-status words,

B

one word for each page. Two functions embeded in the MONIKOR
system (viz. 4) control the memory sharing administration:

GETPA (get page) and PUTPA (put page).

In any legal job program the calls of these functions are paired
off, so that every job finishes only after giving up all space
reserved during runtime.

The problem that arises when any program requests space not
available at that moment, is dealt with in the context of the
ecritical point" mechanism discussed in section 4.

Program allocation: whenever a job program is loaded under
MONIXOR supervision the GETPA routine is used to obtain a
sufficient number of pages. Since the loader program itself is
also a job program, operating in parallel with other programs,
successively allotted pages in general are not contiguous.

In order to use the dynamic storage algorithm for program
allocation it is necessary that programs be relocatable by page
rather than as a unit. By requiring that any direct transition
from one page to another occurs via a jump, or subroutine call,
the relocation method becomes trivial and the format can be
kept identical to the SHRIMP formet or the corresponding
magnetic tape format.

4, Multi-job processing, time/memory sharing.

The MONIKOR supervisory-system allowing several independent
or semi-independent job-programs to be run simultaneously
has been mentioned in previous pages.

The system has grown as a consequence of a number of re-
quirements dictated by the application of the PDP-8 as a coor-
dinating element among several relatively autonomous periphe--
rals including the experimental set up, two tapé units, a
display unit, another computer and an “operator/physicist".
MONIKOR itself, however, is independent of the periphery
(except the teletype).

Successively improved versions of the MONIKOR-system have
been satisfactorily used in our institute for about one year.

The characteristics of the system can be formulated to inclu-
de:
-~ possibility of programming on a high level.
- modular vrograms (so-called jobs) usually with minimal
restrictions to size or hierarchic level.

B -

- increased flexibility in combination of jobs and their
mutual activation.

- jobs that run asynchronously on a macroscopic level.

- time divided between "active® job-progrems only.

- switching times between jobs in the 10 micro-second range.

- if memory space is needed, space occupied by jobs which
are not "busy" is used.

- jobs read in from paper tape or magnetic tape as needed.

- loaders (jobs themselves) that run simultaneouslv with the
other programs.

- continuous access to the active processes by the "operator/
physicist".

- standard functions (those within the system too) available
for all jobs.

-~ waiting times minimized by using queuing-mechanisms,

~- a free space of 20(10) pages for simulteneously active
jobs (the system occupies 12(10) pages).

The system:

MONIKOR consists of a set of bookkeeping subroutines, 2
central administration and some standard job-programs such as
paper'tape/hagnetic tape loader and a teletype job-program.
The operator has almost continuously access to the system by
using the command-job (COJOB), which enables him to "attach®
new high level jobs (so-called protocols) to the running pro-
cess and to examine and modify internal conditions or address
contents.

A protocol-job, once started, automatically triggers a tree-
structured process. Program-jobs synchronized at critical
points are the building blocks of the process.

From this moment on, eventually not already attached jobs are
either read in from magentic tape or requested via teletyne,
automatically.

Jobs: job-programming for the IMONIKOR system requires some
additional rules, because the mutual synchronization of
different jobs and peripherals is realised by using private
semaphores in the jobs themselves.

These semaphores are inserted at "critical points" which
could be defined to be points where the program waits for the
change of some internal or external condition.

- T =

5. Asynchronous information flows.

Within the framework of the WINDOW- processing method

3) 5

general input-output file handling system has been designed
and implemented in the MONIKOR system. This I/O system handles
any information channel including the experimental set up,

the tape units, the display unit and the EL-X8 computer.

Even though the PDP-8 WINDOW-system is only a simple realiza-
tion of the WINDOW processing ideas %) it appears to be
useful.

The following main characteristics result:

- Interacting asynchronous input- and output programs
"switch" information at the file level between one input
channel and a number of output channels. Information is
transferred between the input- and output-programs using
the dynamic storage zllocation mechanism as mentioned in

section 3.

- The input- and output-programs are jobs, cooperating with
the MONIKOR system.

- The flow of information chopped up into info-records,

and headers

3%) (length: 1 page or less) may be passed

along "windows", These are noun standard subroutines, to be
specified at the hoghest (protocol) level, which may
inspect and operate upon the information between input- and

output. Window-routines may also prevent transfer of
selected records to the output-side (skipping). Window-
routines may be omitted; in that case a program of a few
standard elements may specify a complete file process.

- The numbers of internal buffers (length: 1 page) is a
variable parameter of the process.

- Buffer memory is reserved only when actually needed.

- Different I/O processes may run simultaneously.

- Output jobs wainting for (input) information do not take
up processor time. Synchronization is accomplished using
the éémaphore—functions of the MONIKOR,

)
#¥)

EHH)

to be published

proceedings of the symposium on Nuclear Electronics,
Versailles, 1968

Headers are special records acting as separators and spe-
cificators of nested macroscopic quanta of information.

6. Program tracing,

In this section a method is presented that allows programs
to be "traced" and tested while completely under dynamic
program supervision.

The method requires an extremely simple hardware facility,
called: DELAYED SELF-INTERRUPT (DELSI).

DELSI consists of one single flag which can give a program
interrupt.

The flag can be skipped upon, it can be cleared and set, the
latter with a delay of about 5us.

The delay time is chnsen to permit exit from the interrupt
sequence and to allow at most one selected instuction to be
executed. At the completion of that instuction a program
interrupt is again initiated Eﬁ**). This means that the program
can be interlaced in time by a tracer-infterrupt-routine, thus
operating at the background of the program.

In this interrupt-routine the program status may be inves-—
tipgated and dependent on certain criteria, to be selected and
adjusted by the operator, a message to the operator may be
given or tracing may be suspended.

Several tracer progrems have been intensively used in the past
year, Due to the simplicity of the method it is possible

to obtain easily a "special purpose" tracer program. A very
simple tracer may be as short as half a memory page.

The main advantage of the DELSI circuit is that programma-
tic awareness, except during execution of interrupt-routines,
is constantly guaranteed without time- and space consuming
interpretative instruction simulation. Also instruction modi-
fications such as: DCA, + 1 do not disturb the tracer program,

A frequently used tracer program (CHASER), is under teletype
control. It offers a number of standard facilities. For example,
tracer messages are given when the program under control is
about to: run outside/inside 2 specified memory region, to
modify a specified address, to execute a specified instruction,
etc.

szxx%) When a data break disturbs proper timing, the DELSI-fleg
is already up before the next test-instruction is exe-
cuted. This is unimportant, it amounts to a dummy cycle.
The IOF instruction has to be dealt with separately.

-9 -

A tracer message consists of the octal printout of the
current value of: the program counter, the address and the
value of the last executed instructions, the content of accu-
mulator and link or any subset of these.

Apart from "supervised runs", so called "blind runs" like
the ODT program from DEC are possible. The latter may be used
to test interrupt routines.

7. Computer-computer conversional scheme,

An interface with its associated software has been desig-
ned %) to couple a PDP-8 to a medium size computer of the
type Electrologica X-8 **). The requirements which determined
the adopted philosophy and subsequent design were dictated
by the on-line function of the X-8 as a "hypervisor" of the com—
plex nuclear experimental BOL-system. Direct supervision of
the experiment and associated tasks such as recording, dis-
playing and dumping of data are given to the PDP-8,

The primary tasks of the X-8 during an experiment can be sum-—
marized as 2-dimensional histogration on drumstore and checking
with regard to the quality and stability of recorded data.
Simultaneously the arrays resulting from histogration should

be accessable for the physicists in order to get proper in-
sight into the functioning of the experimental system.

The way in which the communication-game between different
program levels in each computer and between the computers
themselves has to be played, is called the conversational
schene,

The communication takes place at different levels, while both
machines run their own programs in multi- or single run envi-
ronment. All communication is devided into "conversations",
In both machines, conversations are "opened" and "closed"

by programs of the highest level.

A conversation is protected against "re-opening" using a
queuing mechanismn.

%) Cooperation of N.V, Electrologica is gratefully acknowledged,
®%) Specifications: 32 k memory, 27 bits 1.5 psec cycle time,
independent I/0 processor and data channel synchronizer,
54 bits floating point arithmetic, drum (500 k), line printer,
4 120 kc CDC tape units 3 teletypes, papertape reader/punch.

-10 -

Once a conversation is opened both machines have mutually
synchronized programs on each side among other asynchronous
programs.

At this stage only "introductory" communication is possible.
This introductory communication consists of the exchange
of "introductory sentences"”, 120 bit messages. These are used
for further program synchronization as well as for task dele-
gation., Next stage in communication can be reached by the ope-
ning of "datafiles". Two files can be opened simultaneously,
one for each direction. Once a datafile is opened, '"data
sentences" can be transferred in the direction associated with
that file. Data sentences have arbitrary length up to a maxi-
mum specific for each deta file and arbitrary location.
Date files for the two directions may be interlaced almost
arbitrarily. A few rules prevent the communication to get into
a '"dead end" due to simultaneous mutual dependence of high
level programs on each side.

8. Autonomous display for nuclear data exploration.

A Wuclear D,ta-160 M unit has been interfaced to a PDP-8.
The unit consists of an 18 bits, 4 k memory with control unit
2llowing automatic recycling of the memory for different
types of point displays. The display unit has been extended
with an oscilloscope interface providing several hardware
facilities useful for data exploration and -modification. The
system is in particular designed for spectrum analysis and
nuclear particle-identification. The main facilities of the
system are:

- 2 dimensional with adjustable viewing angle. The display
can be changed continuously from a topview through an
isomeric view into a side view.

- Selected lines or points can be displayed with increased
light intensity.

- A computer controlled three bits intensity register
allows 8 grades of intensity.

- Different lay-out configurations can be chosen: 1 x 4096,
16 x 256, 32 x 128 and 64 x 64,

- The PDP-8 program is able to write and read the display
memory and to start and stop autonomous display runs,

- 12 bit of each 18 bit word are used for Y-deflection

o 171

the other 6 are function bits.
- Flicker is reduced by two hardware provisions, which
can be switched on and off by the program:
- interline
~ cheining
In interline mode alternately only odd and only even
addresses are displayed; in chaining mode a " jumpfunc-
tion bit" indicates whether the next display cycle
should be at the next address (jumpbit = 0) or at the
address contained in the (last) memory word with jumpbit = 1.
The display chain is to short-circuit uninteresting
regions in the display memory, thus increasing the re-
fresh-frequency.
~ A lightpen can be used in two different modes. In
the "mark mode" lightpen indication is hardware recorded
into the '"lightpen function bit", of the corresponding
display word. In "signal mode"” lightpen indication is
directly carried over to the program without modifica-
tion of the display memory.

a 12 i

APPENDIX T

A SHRIMP format papertape has the following form +):
< leader trailer >

¥ < program-group identifier >

< progrem identifier >

< ASCII program name >

=<< program version identifier >

< nominal origin setting >
< word >
< word >
relocatable or
fired program-block
< word >

iH
N

nominal origin setting >

< word >
< word > fixed program-
or key-blocks
= 777

relocator >

lr
N

x= < relocator > relocator

list
x < relocator >
RN, 11010/ end of tape indication
< checksum >
= TTTT

< terminal instruction >

Remarks:

— The identifiers and program name at the head of the pro-
gram are used for automatic program searching and
checking.

-~ The version identifier indicates also whether the tape
is relocatable or not.

- Relocatable programs may have only one 'relocatable®
program block. All following blocks are in that case
by definition "Key-block".

+) ¥ has in SHRIMP format the same representation as the origin
setting in BIN format.

e k.

-~ A key-block is a program block for which the actual ori-
gin setting is definitely equal to the nominal origin-
setting while the content of the origin-address will he
modified., This modification is such that if the origin-
address would conta2in a pointer (or key) to any location
in the nominally located program, it will do so after re-
location. In general a key-block contains only one word,
the "key', which actually may serve to link different
relocated programs via a fixed address (preferentially
being taken at page @). When a key-block contains more
then one word, the remaining words are located without
modification. A set of subroutines may thus be made re-
locatable, keys ensuring that from any place in the memory
the subroutines may be called wherever they have been
loaded.

— The relocator list may be empty.

- The relocators are the nominal addresses in the program
where internal address pointers are placed, i.e. loca-
tions of which the addresses and the content are being
modified in case of relocation. They have to be speci-
fied by the programmer although for symbolic programs
automatic detection of these relocators could be done
by double translation.

-~ The checksum has been defined slightly different than for
the BIN format.

- The terminal instruction may be any instruction to be
executed after loading the progrem with the SHRIMP
loader. In most cases it is a HIT (74@2).

-~ Addresses @ and 7777 are excluded from loading.

APPENDIX IT

1. SHRIMP loader

— e Gemw e s e e e

The 8HRIMP loader has been developed from an idea of N. CHASE'g).
Though slightly longer than the DEC-RIM loader, it seems
competitive with the BIN-loader; while short enough to be
toggled in using the switch register.

The octal representation of the SHRIMP loader as normally
used at the top of the memory (starting address = 7753) iss

=) DECUSCOPE 5/7 (1966) p. 6

a f

= TTATs 33463 T904; 13775 1900; 3000; 6@32; 536@; 6@36;
71663 71463 6@31; 5361; T51@; 53563 T9@6; 6@345 33775 137T;
74%%s 53475 37465 23465 535¢; 1000.

The SHRIMPloader uses the addresses @ and 7777.
Features: load and go. The SHRIMP loader has a2 load and go
facility which gives the following possibilities:
- program auto-start: when the program is loaded it may
automatically be started.
~ loading interlude: during loading a program part which
just has been read into core may be executed while at the
completion of this interlude program loading may be
automatically resumed.

12 bits checksum held in the accumulator at the completion
of loading.

The SHRIMP loader loads RIM format tapes normally.

2., SHARKY loader,.

Specifications:

purpose: loading of relocatable and fixed SHRIMP formatted
programs

lenght: 1@3% (1¢) locations

nominal starting address: 7600

use: program to be loaded in reader

The SHARKY loader when started, reads end skips ASCII charac-
ters. It examines the version identifier to detect whether

the offered progream is relocatable or not (viz. I). When the
program is not relocatable it is loaded normelly. When the
program is relocatable, the loader halts, displaying in the
accumulator the relative page address of the initial origin-
setting. The operator may now define, using the switch regis-
ter, the page where the actual origin-setting should be located.
After having pressed the continue-switch the program is loaded
at the specified memory regiomn.

3. SHARK loader.

Specifications:

purpose: loading of relocations and fixed SHRIMP formatted
programs

length: 256(1@)locations

nominel starting address: 200
use: gimilar to SHARKY loader

Keeping track of the location of different relocated programs
is easy using this loader, due to the printout of program
identifier and the occupied memory resions. The operator thus
may be oonstantly aware of where his programs are. The loader
protects itself against overwriting. It further has a read-
compare facility. By putting the switch register equal to

zero during loading each word being stored is first compared
to the present value. When the new and old value are different
the storage address with the 0ld and the new value are printed.
This feature may be of help in detecting various types of

errors.

APPENDIX III

— s M RS mew e Ses mees S s e ema e e . mm—— —

The interface allows the following types of commands to be

accepted (TA = tepe address, TW = word count):

a. READ BIOCK "NORMAL MODE" maximally TW WORDS to begin with

oy

b. W1.LTE BLOCK "NORMAL MODE", maximally TW WORDS to begin
with TA

¢c. READ BLOCK "SCATTER MODE'", the first TW WORDS to begin
with TA

d. READ BLOCK "WORD MODE", (MAX)TW WORDS to begin with TA ,

e. The commands: REWIND, UNIOAD, SPACE FORWARD, SPACE BACKWARD,
WRITE BLANK 7", SET BCD/BIN PARITY.

at a. and b.:

"NORMAL MODIE"™ reading and writing takes place using the date
break memory-access, an interrupt flag being raised at the
completion of the transfer. On inspection of the tape-status
register the program may check on the correct execution of
the command. VWhen during reading the actual tape record
contains more words than specified, transfer to the memory
is stopped if the word-count is exhausted, Apart from this,
the command will be normally completed.

at c:
For a record read in SCATTIR MODE, the word-count reaching
the value zero, will not simply terminate the data transfer.

- 1l -
i

It will initiate an interrupt which if properly handled

by the program may lead to a continuation of reading in

a newly specified region in memory. Since the interrupt has
to be handled before the next tape-word assembled in the
data-word register is ready for transfer, this interrupt
should be handled with utmost priority. The interface,
however, should not rely on program timing., Therefore, in the
interface investigation is made whether the interrupt handling
and eventual reloading of registers has occured in time.

If not, a timing error flag is raised, memory transfer is
stopped. The program upon detecting the error will reread the

previous record.

at d.:

During reading in WORD MODE, at the completion of each data
breakeycle a flag is raised signalling to the progrem that

a2 new data word has been stored. This mode is particularly
useful. Address advance may be suppressed. With this option,
part of a record or an entire record may be examined using a
memory buffer-region of a single word. Important is the possi-
bility of switching between this mode and the other modes
(program searching and loading, viz.2).

- 1l -
i

It will initiate an interrupt which if properly handled

by the program may lead to a continuation of reading in

a newly specified region in memory. Since the interrupt has
to be handled before the next tape-word assembled in the
data-word register is ready for transfer, this interrupt
should be handled with utmost priority. The interface,
however, should not rely on program timing., Therefore, in the
interface investigation is made whether the interrupt handling
and eventual reloading of registers has occured in time.

If not, a timing error flag is raised, memory transfer is
stopped. The program upon detecting the error will reread the

previous record.

at d.:

During reading in WORD MODE, at the completion of each data
breakeycle a flag is raised signalling to the progrem that

a2 new data word has been stored. This mode is particularly
useful. Address advance may be suppressed. With this option,
part of a record or an entire record may be examined using a
memory buffer-region of a single word. Important is the possi-
bility of switching between this mode and the other modes
(program searching and loading, viz.2).

